
COMP 364 (3 Credits) – Computer Tools for Life Science
Fall 2017

McGill University

Syllabus

Course description:
Introduction to computer programming in a high level language: variables,
expressions, types, functions, conditionals, loops, objects and classes. Introduction to
algorithms, data structures (lists, strings), modular software design, libraries, file
input/output, debugging. Emphasis on applications in the life sciences.

List of life science topics used as examples:
• Central dogma of molecular biology
• RNA and/or protein structure prediction
• Genome sequencing and analysis
• Biological networks
• Evolution
• Epigenetics
• Biomarker discovery
• Biosystems dynamics
• Cell and biomedical imaging
• Modeling

Objectives:
By the end of this course, students will be able:

1) Design and describe precise, unambiguous instructions that can be used [by a
computer] to solve a problem or perform a task;

2) Translate these instructions into a language that a computer can understand
(Python);

3) Write programs that solve complex problems (especially those arising in Life
Sciences) by decomposing them into simpler subproblems;

4) Apply programming-style and structure conventions to make your programs easy
to understand, debug and modify;

5) Learn independently about new programming-language features and libraries by
reading documentation and by experimenting.

Prerequisites: BIOL 112 and A CEGEP level mathematics course

Restrictions: Only one of COMP 204, COMP 202 and COMP 208 can be taken for
credit. COMP 204 cannot be taken for credit with or after COMP 250, COMP 206, or
COMP 364.

http://www.mcgill.ca/study/2016-2017/courses/comp-202
http://www.mcgill.ca/study/2016-2017/courses/comp-208
http://www.mcgill.ca/study/2016-2017/courses/comp-250

Instructors:

Christopher John Frederick Cameron : christopher.cameron@mail.mcgill.ca
Carlos Oliver: carlos.gonzalezoliver@mail.mcgill.ca

Course Webpage: http://cs.mcgill.ca/~cgonza11/COMP_364/

Teaching Assistants: No TAs are available for this course.

Location: Education Building, Room 216

Lecture format: 3 x 50 minutes of lectures per week (MWF).

Additional tutorials:
1. Installation of Python on laptop computers
2. Unix environment: File system organization and basic commands

Textbook: How to Think Like a Computer Scientist: Interactive Edition
(Python)
http://interactivepython.org/courselib/static/thinkcspy/index.html#

Student evaluation:
Assignments: 35% (5 assignments worth 7% each)
Quizzes: 5% (5 quizzes worth 1% each)
Midterm exam: 20%
Final exam: 40%

Assignments:
5 Python programming assignments, each aiming at addressing a specific biological
question.

mailto:christopher.cameron@mail.mcgill.ca
mailto:carlos.gonzalezoliver@mail.mcgill.ca
http://cs.mcgill.ca/~cgonza11/COMP_364/
http://interactivepython.org/courselib/static/thinkcspy/index.html#

Lecture schedule

Lecture Computer science topic

1 Thinking algorithmically

2 What is a computer: CPU, RAM, storage, communication.
 Binary numbers, instructions

3 Python programming: What is code? How write code? How to run it? Basic
programs

4 Python programming: variables and types. Program execution.

5 Python programming: Control flow: conditionals, boolean expressions

6 Python programming: Lists

7 Python programming: Control flow: for loops, while loops

8 Putting it together: Nested loops and conditionals

9 Python programming: Tracing program, debugging

10 Python programming: Debugging using a debugger (pdb)

11 Program organization: functions, encapsulation, execution flow, variable
scope

12 Program organization: function parameters and return values. Composition.

13 Python programming: Dictionaries

14 Putting it together – part I: Combined use of functions, loops, and lists.

15 Putting it together – part II: Advanced examples; Commenting code

16 Algorithm design: Linear and Binary Search

17 Algorithm design: Selection Sort and InsertionSort

18 Review session

19 Midterm exam

20 Python programming: File IO, internet IO

21 Object-oriented programming: Modules, Classes, and Objects

22 Object-oriented programming: Modules, Classes, and Objects

23 Object-oriented programming: Modules, Classes, and Objects

Right to submit in English or French written work that is to be graded:
In accord with McGill University’s Charter of Students’ Rights, students in this course
have the right to submit in English or in French any written work that is to be graded.

Academic Integrity statement:
McGill University values academic integrity. Therefore all students must understand the
meaning and consequences of cheating, plagiarism and other academic offences under the
Code of Student Conduct and Disciplinary Procedures (see www.mcgill.ca/students/srr/
honest/ for more information).

24 Python libraries; How to read and use an API

25 Using libraries: Data visualization with MatPlotLib

26 Using libraries: Data visualization with MatPlotLib

27 Building complex programs using BioPython

28 Biological data analysis with BioPython: Sequence analysis

29 Biological data analysis with BioPython: molecular structures

30 Notions of machine learning

31 Intro to machine learning with scikit-learn

32 Intro to machine learning with scikit-learn

33 Notions of image processing

34 Introduction to image analysis with scikit-image

35 Introduction to image analysis with scikit-image

36 Toward other programming languages. Compiled vs interpreted languages

37 Toward other programming languages. Static vs dynamic typing

38 Review session

http://www.mcgill.ca/students/srr/honest/
http://www.mcgill.ca/students/srr/honest/

